SQL Simulate
Synthetic Data Generation
Generate realistic synthetic data from schema metadata alone. No source data required - create complete test environments from scratch with proper distributions and relationships.
How It Works
Analyze Schema
Read table structures, data types, constraints, and relationships
Infer Semantics
AI determines what each column represents (name, email, date, etc.)
Generate Data
Create realistic data respecting all constraints and relationships
Intelligent Column Detection
AI infers data types from column names and generates appropriate values
Column Analysis Results
════════════════════════════════════════════════════════════
Table: Customers
┌──────────────────┬─────────────┬──────────────────┬───────────────┐
│ Column │ SQL Type │ Inferred Type │ Generator │
├──────────────────┼─────────────┼──────────────────┼───────────────┤
│ CustomerId │ INT │ Primary Key │ Sequential │
│ FirstName │ NVARCHAR │ Person.FirstName │ Faker │
│ LastName │ NVARCHAR │ Person.LastName │ Faker │
│ Email │ NVARCHAR │ Email Address │ {first}.{last}│
│ PhoneNumber │ VARCHAR │ Phone (US) │ ###-###-#### │
│ DateOfBirth │ DATE │ Birth Date │ 18-80 years │
│ CreatedAt │ DATETIME │ Timestamp │ Recent dates │
│ IsActive │ BIT │ Boolean │ 90% true │
│ CreditScore │ INT │ Score (300-850) │ Normal dist │
└──────────────────┴─────────────┴──────────────────┴───────────────┘
Confidence: 94% (override any detection in config)Fine-Tune Generation
# sql2ai-simulate.yaml
generation:
seed: 42 # Reproducible results
locale: en_US
tables:
Customers:
row_count: 10000
columns:
CreditScore:
distribution: normal
mean: 680
std_dev: 80
min: 300
max: 850
State:
distribution: weighted
values:
CA: 0.15
TX: 0.12
FL: 0.10
NY: 0.08
other: 0.55
Orders:
row_count: 50000
date_range:
start: 2023-01-01
end: 2024-12-31
parent_distribution:
table: Customers
type: pareto # Some customers order more
relationships:
preserve_referential_integrity: true
cascade_generation: trueUse Cases
Load Testing
Generate millions of rows to stress test your database
New Projects
Populate empty databases for development
Demo Environments
Create realistic data for sales demos
CI/CD Testing
Fresh test data for every pipeline run
Simulate vs Anonymize
SQL Simulate
- • No source data required
- • Generates from schema metadata
- • Perfect for new projects
- • Configurable distributions
- • Zero privacy risk
SQL Anonymize
- • Requires production data
- • Preserves data patterns
- • Maintains distributions
- • Keeps edge cases
- • Secure clean room process
Generate Test Data Instantly
Create realistic synthetic data from schema alone. No production data needed.
No credit card required • Free for individual developers